相關(guan) 文章
Related Articles詳細介紹
品牌 | 其他品牌 | 價格區間 | 麵議 |
---|---|---|---|
組件類別 | 光學元件 | 應用領域 | 醫療衛生,環保,化工,電子/電池,綜合 |
Semrock BrightLine單邊緣二向色分束器
單邊緣通用型二向色分束器(偏振不敏感;在45°使用)
大多數分束器是長波通濾光片(LWP)(反射較短的波長和發射較長波長)。我們(men) 提供了各種各樣的的偏振不敏感的二向色分束器,它們(men) 展示了非常高而平坦的反射帶和透射帶的陡峭邊緣。更完整的反射和透射意味著較低的背景雜散光和強化的信噪比。這些應用於(yu) 熒光顯微鏡和儀(yi) 器的濾光片進行了優(you) 化,也可用於(yu) 需要基於(yu) 波長的光束合並和分離的其他各種應用。所有的濾光片都是用我們(men) 可靠的硬鍍膜技術製造的,並利用高光學質量,超自熒光玻璃基片。這些濾光片非常適合於(yu) 熒光顯微鏡、流式細胞術和各種熒光成像的應用。
Semrock BrightLine單邊緣二向色分束器
標準邊緣波長 | 平均反射帶 | 平均透射帶 | 尺寸 | 玻璃厚度 | 型號 |
310 nm | > 98% 255 – 295 nm | > 90% 315 – 600 nm | 25.2 x 35.6 mm | 1.05 mm | FF310-Di01-25x36 |
347 nm | > 97% 240 – 325 nm | > 93% 380 – 800 nm | 25.2 x 35.6 mm | 1.05 mm | FF347-Di01-25x36 |
365 nm | > 94% 230 – 360 nm | > 90% 370 – 508 nm | 25.2 x 35.6 mm | 1.05 mm | FF365-Di01-25x36 |
376 nm | > 98% 327 – 371 nm | > 93% 381 – 950 nm | 25.2 x 35.6 mm | 1.05 mm | FF376-Di01-25x36 |
379 nm | > 98% 327 – 353 nm | > 90% 394 – 687 nm | 25.2 x 35.6 mm | 1.05 mm | FF379-Di01-25x36 |
380 nm | > 95% 350 – 375 nm | > 93% 385 – 450 nm | 25.2 x 35.6 mm | 1.05 mm | FF380-Di01-25x36 |
390 nm | > 95% 335 – 375 nm | > 90% 399 – 500 nm | 25.2 x 35.6 mm | 1.05 mm | FF390-Di01-25x36 |
409 nm | > 98% 327 – 404 nm | > 93% 415 – 950 nm | 25.2 x 35.6 mm | 1.05 mm | FF409-Di03-25x36 |
414 nm | > 98% 327 – 409 nm | > 93% 420 – 950 nm | 25.2 x 35.6 mm | 1.05 mm | FF414-Di01-25x36 |
416 nm | > 90% 360 – 407 nm | > 90% 425 – 575 nm | 25.2 x 35.6 mm | 1.05 mm | FF416-Di01-25x36 |
435 nm | > 98% 394 – 406 nm | > 90% 449 – 687 nm | 25.2 x 35.6 mm | 1.05 mm | FF435-Di01-25x36 |
452 nm | > 90% 423 – 445 nm | > 90% 460 – 610 nm | 25.2 x 35.6 mm | 1.05 mm | FF452-Di01-25x36 |
458 nm | > 98% 350 – 450 nm | > 93% 467 – 950 nm | 25.2 x 35.6 mm | 1.05 mm | FF458-Di02-25x36 |
482 nm | > 90% 415 – 470 nm | > 90% 490 – 720 nm | 25.2 x 35.6 mm | 1.05 mm | FF482-Di01-25x36 |
495 nm | > 98% 350 – 488 nm | > 93% 502 – 950 nm | 25.2 x 35.6 mm | 1.05 mm | FF495-Di03-25x36 |
496 nm | > 98% 512 – 900 nm | > 93% 400 – 480 nm | 25.2 x 35.6 mm | 2.0 mm | FF496-SDi01-25x36x2.0 |
497 nm | > 90% 452 – 490 nm | > 90% 505 – 800 nm | 25.2 x 35.6 mm | 1.05 mm | FF497-Di01-25x36 |
499 nm | > 90% 470 – 490 nm | > 90% 508 – 675 nm | 25.2 x 35.6 mm | 1.05 mm | FF499-Di01-25x36 |
500 nm | > 98% 485 – 491 nm | > 90% 510 – 825 nm | 25.2 x 35.6 mm | 1.05 mm | FF500-Di01-25x36 |
505 nm | > 98% 513 – 725 nm | > 90% 446 – 500 nm | 25.2 x 35.6 mm | 1.05 mm | FF505-SDi01-25x36 |
506 nm | > 98% 350 – 500 nm | > 93% 513 – 950 nm | 25.2 x 35.6 mm | 1.05 mm | FF506-Di03-25x36 |
509 nm | > 94% 230 – 502 nm | > 90% 513 – 830 nm | 25.2 x 35.6 mm | 1.05 mm | FF509-Di01-25x36 |
510 nm | > 98% 327 – 488 nm | > 93% 515 – 950 nm | 25.2 x 35.6 mm | 1.05 mm | FF510-Di02-25x36 |
511 nm | > 90% 400 – 495 nm | > 90% 525 – 800 nm | 25.2 x 35.6 mm | 1.05 mm | FF511-Di01-25x36 |
516 nm | > 90% 490 – 510 nm | > 90% 520 – 700 nm | 25.2 x 35.6 mm | 1.05 mm | FF516-Di01-25x36 |
518 nm | > 98% 400 – 512 nm | > 93% 523 – 690 nm | 25.2 x 35.6 mm | 1.05 mm | FF518-Di01-25x36 |
520 nm | > 98% 350 – 512 nm | > 93% 528 – 950 nm | 25.2 x 35.6 mm | 1.05 mm | FF520-Di02-25x36 |
526 nm | > 98% 350 – 519.5 nm | > 93% 532 – 950 nm | 25.2 x 35.6 mm | 1.05 mm | FF526-Di01-25x36 |
535 nm | > 90% 539 – 840 nm | > 95% 524 – 532 nm | 25.2 x 35.6 mm | 1.05 mm | FF535-SDi01-25x36 |
552 nm | > 98% 350 – 544 nm | > 93% 558 – 950 nm | 25.2 x 35.6 mm | 1.05 mm | FF552-Di02-25x36 |
553 nm | > 98% 561 – 725 nm | > 90% 500 – 546 nm | 25.2 x 35.6 mm | 1.05 mm | FF553-SDi01-25x36 |
555 nm | > 98% 493 – 548 nm | > 90% 562 – 745 nm | 25.2 x 35.6 mm | 1.05 mm | FF555-Di03-25x36 |
556 nm | > 97% 561 – 950 nm | > 93% 480 – 552 nm | 25.2 x 35.6 mm | 1.05 mm | FF556-SDi01-25x36 |
560 nm | > 98% 485 – 545 nm | > 90% 570 – 825 nm | 25.2 x 35.6 mm | 1.05 mm | FF560-Di01-25x36 |
562 nm | > 98% 350 – 555 nm | > 93% 569 – 950 nm | 25.2 x 35.6 mm | 1.05 mm | FF562-Di03-25x36 |
570 nm | > 90% 525 – 556 nm | > 90% 580 – 650 nm | 25.2 x 35.6 mm | 1.05 mm | FF570-Di01-25x36 |
573 nm | > 98% 350 – 566 nm | > 93% 580 – 950 nm | 25.2 x 35.6 mm | 1.05 mm | FF573-Di01-25x36 |
585 nm | > 90% 533 – 580 nm | > 90% 595 – 800 nm | 25.2 x 35.6 mm | 1.05 mm | FF585-Di01-25x36 |
標準邊緣波長 | 平均反射帶 | 平均透射帶 | 尺寸 | 玻璃厚度 | 型號 |
591 nm | > 98% 601 – 800 nm | > 90% 530 – 585 nm | 25.2 x 35.6 mm | 1.05 mm | FF591-SDi01-25x36 |
593 nm | > 98% 350 – 585 nm | > 93% 601 – 950 nm | 25.2 x 35.6 mm | 1.05 mm | FF593-Di03-25x36 |
596 nm | > 98% 350 – 588.6 nm | > 93% 603 – 950 nm | 25.2 x 35.6 mm | 1.05 mm | FF596-Di01-25x36 |
605 nm | > 98% 350 – 596 nm | > 93% 612 – 950 nm | 25.2 x 35.6 mm | 1.05 mm | FF605-Di02-25x36 |
611 nm | > 98% 620 – 800 nm | > 90% 550 – 603 nm | 25.2 x 35.6 mm | 1.05 mm | FF611-SDi01-25x36 |
614 nm | > 97% 635 – 700 nm | > 70% 244 – 300 nm > 90% 300 – 594 nm | 25.2 x 35.6 mm | 2.0 mm | FF614-SDi01-25x36x2.0 |
624 nm | > 95% 528 – 610 nm | > 93% 630 – 750 nm | 25.2 x 35.6 mm | 2.0 mm | FF624-Di01-25x36x2.0 |
625 nm | > 98% 635 – 850 nm | > 90% 400 – 620 nm | 25.2 x 35.6 mm | 1.05 mm | FF625-SDi01-25x36 |
635 nm | > 94% 507 – 622 nm | > 90% 636 – 830 nm | 25.2 x 35.6 mm | 1.05 mm | FF635-Di01-25x36 |
647 nm | > 94% 667 – 1010 nm | > 93% 360 – 640 nm | 25.2 x 35.6 mm | 1.05 mm | FF647-SDi01-25x36 |
648 nm | > 98% 400 – 629 nm | > 90% 658 – 700 nm | 25.2 x 35.6 mm | 1.05 mm | FF648-Di01-25x36 |
649 nm | > 98% 500 – 642 nm | > 90% 654 – 825 nm | 25.2 x 35.6 mm | 1.05 mm | FF649-Di01-25x36 |
650 nm | > 98% 500 – 640 nm | > 90% 660 – 825 nm | 25.2 x 35.6 mm | 1.05 mm | FF650-Di01-25x36 |
652 nm | > 98% 350 – 644 nm | > 93% 659.5 – 950 nm | 25.2 x 35.6 mm | 1.05 mm | FF652-Di01-25x36 |
654 nm | > 95% 660 – 850 nm | > 93% 490 – 650 nm | 25.2 x 35.6 mm | 1.05 mm | FF654-SDi01-25x36 |
655 nm | > 98% 470 – 645 nm | > 90% 665 – 726 nm | 25.2 x 35.6 mm | 1.05 mm | FF655-Di01-25x36 |
660 nm | > 98% 350 – 651 nm | > 93% 669 – 950 nm | 25.2 x 35.6 mm | 1.05 mm | FF660-Di02-25x36 |
665 nm
| See Multiphoton filters, page 40
| FF665-Di02-25x36
| |||
670 nm
| Short-wave-pass; See Multiphoton filters, page 40
| FF670-SDi01-25x36
| |||
677 nm
677nm
| > 98% 400 – 658 nm
| > 90% 687 – 830 nm
| 25.2 x 35.6 mm
| 1.05mm | FF677-Di01-25x36 |
685 nm | > 98% 350 – 676 nm | > 93% 695 – 939 nm | 25.2 x 35.6 mm | 1.05 mm | FF685-Di02-25x36 |
695 nm | > 98% 450 – 680 nm | > 90% 710 – 850 nm | 25.2 x 35.6 mm | 1.05 mm | FF695-Di01-25x36 |
697 nm | > 97% 705 – 900 nm | > 93% 532 – 690 nm | 25.2 x 35.6 mm | 1.05 mm | FF697-SDi01-25x36 |
700 nm | > 97% 532 – 690 nm | > 93% 705 – 800 nm | 25.2 x 35.6 mm | 1.05 mm | FF700-Di01-25x36 |
700 nm | Short-wave-pass; See Multiphoton filters, page 40 | FF700-SDi01-25x36 | |||
705 mm | See Multiphoton filters, page 40 | FF705-Di01-25x36 | |||
720 nm | Short-wave-pass; See Multiphoton filters, page 40 | FF720-SDi01-25x36 | |||
725 nm | > 90% 750 – 1140 nm | >90% 430 – 700 nm | 25.2 x 35.6 mm | 3.5 mm | FF725-SDi01-25x36x3.5 |
735 nm | See Multiphoton filters, page 40 | FF735-Di02-25x36 | |||
740 nm | > 98% 480 – 720 nm | >90% 750 – 825 nm | 25.2 x 35.6 mm | 1.05 mm | FF740-Di01-25x36 |
749 nm | > 96% 770 – 1100 nm | >93% 400 – 730 nm | 25.2 x 35.6 mm | 3.0 mm | FF749-SDi01-25x36x3.0 |
750 nm | > 96% 770–920nm nm > | >93% 450 – 730 nm | 25.2 x 35.6 mm | 1.05 mm | FF750-SDi02-25x36 |
756 nm | > 90% 780 – 820 nm | > 88% 300 – 315 nm > 93% 315 – 700 nm | 25.2 x 35.6 mm | 1.05 mm | FF756-SDi01-25x36 |
757 nm | > 98% 450 – 746 nm | > 93% 768 – 1100 nm | 25.2 x 35.6 mm | 1.05 mm | FF757-Di01-25x36 |
765 nm | > 95% 450 – 750 nm | > 93% 780 – 950 nm | 25.2 x 35.6 mm | 2.0 mm | FF765-Di01-25x36x2.0 |
775 nm | See Multiphoton filters, page 40 | FF775-Di01-25x36 | |||
776 nm | > 98% 450 – 764 nm | > 88% 789 – 1100 nm | 2905.2 x 35.6 mm | 1.05 mm | FF776-Di01-25x36 |
791 nm | > 90% 795 – 940 nm | > 90% 687 – 787 nm | 25.2 x 35.6 mm | 1.05 mm | FF791-SDi01-25x36 |
801 mm | > 98% 450 – 790 nm | > 90% 813.5–1100 nm | 25.2 x 35.6 mm | 1.05 mm | FF801-Di02-25x36 |
825 nm | > 95% 850 – 1650 nm | > 90% 565 – 800 nm | 25.2 x 35.6 mm | 2.0 mm | FF825-SDi01-25x36x2.0 |
872 nm | > 92% 240 – 840 nm | > 90% 903 – 1100 nm | 25.2 x 35.6 mm | 2.0 mm | FF872-Di01-25x36x2.0 |
875 nm | See Multiphoton filters, page 40 | FF875-Di01-25x36 | |||
925 nm | See Multiphoton filters, page 40 | FF925-Di01-25x36 | |||
930 nm | > 98% 980 – 1140 nm | > 93% 750 – 880 nm | 25.2 x 35.6 mm | 2.0 mm | FF930-SDi01-25x36x2.0 |
989 nm | Short-wave-pass; See Multiphoton filters, page 40 | FF989-SDi01-25x36 |
光學濾光片簡介
濾光片選擇性地透射光譜的一部分,同時拒絕透射其餘(yu) 部分。愛特蒙特光學的光學濾光片常用於(yu) 顯微鏡、光譜學、化學分析和機器視覺,可提供各種過濾類型和精度等級。本應用筆記介紹了用於(yu) 製造愛特蒙特光學濾光片的不同技術、一些關(guan) 鍵規範的定義(yi) 以及愛特蒙特光學提供的各種濾光片的描述。
光學濾光片關(guan) 鍵術語
雖然濾光片與(yu) 其他光學組件有許多相同的規範,但是為(wei) 了有效地了解並確定哪種濾光片適合您的應用,應該了解濾光片中的許多特定規範。
中心波長 (CWL)
用於(yu) 定義(yi) 帶通濾光片的中心波長描述頻譜帶寬的中點,濾光片在此之上傳(chuan) 輸。傳(chuan) 統的鍍膜光學濾光片傾(qing) 向於(yu) 在中心波長附近達到大的透射率,而鍍加硬膜的光學濾光片往往在光譜帶寬上有相當平坦的傳(chuan) 輸輪廓。
帶寬
帶寬是一個(ge) 波長範圍,用於(yu) 表示頻譜通過入射能量穿過濾光片的特定部分。帶寬又稱為(wei) FWHM(圖1)。
圖 1: 中心波長和半峰全寬說明
半峰全寬 (FWHM)
FWHM
描述帶通濾光片將傳(chuan) 輸的頻譜帶寬。該帶寬的上限和下限是在濾光片達到大透射率的 50% 時的波長下定義(yi) 的。例如,如果濾光片的大透射率是 90%,那麽(me) 濾光片達到透射率之 45% 時的波長將定義(yi) FWHM 的上限和下限。10 納米或更低的 FWHM 被認為(wei) 是窄帶,通常用於(yu) 激光淨化和化學檢測。25-50 納米的 FWHM 經常用於(yu) 機器視覺應用;超過 50 納米的 FHWM 被認為(wei) 是寬帶,通常用於(yu) 熒光顯微鏡應用。
截止範圍
阻斷範圍是用於(yu) 表示通過濾光片衰減的能量光譜區域的波長間隔(圖2)。阻斷程度通常會(hui) 在光密度中定。
圖 2: 截止範圍說明
斜率
斜率是通常在邊緣濾光片上定義(yi) 的規範,如短波通或長波通濾光片,用來描述濾光片從(cong) 高截止轉換為(wei) 高透射率的帶寬。可以從(cong) 各種起點和終點定斜率,作為(wei) 截止波長的百分比。愛特蒙特光學有限公司通常將斜率定義(yi) 為(wei) 從(cong) 10% 傳(chuan) 輸點到 80% 傳(chuan) 輸點的距離。例如,將期望具有 1% 斜率的 500 納米長波通濾光片在 5 納米(500 納米的 1%)帶寬上從(cong) 10% 的透射率轉換為(wei) 80% 的透射率。
光密度(OD)
光密度描述被濾光片阻斷或拒絕的能量量。高光密度值表示低透射率,低光密度則表示高透射率。6.0或更大的光密度用於(yu) 兩(liang) 端的阻斷需求,如拉曼光譜或熒光顯微鏡。3.0-4.0的光密度是激光分離和淨化、機器視覺和化學檢測的理想選擇,而 2.0 或更少的光密度是顏色排序和分離光譜順序的理想選擇。
圖3:光密度說明
二向色性濾光片
二向色性濾光片是用於(yu) 取決(jue) 於(yu) 波長透射率或反射光的濾光片類型;特定波長範圍透射的光則鑒於(yu) 不同範圍的光線反射或吸收(圖4)。二向色性濾光片常用於(yu) 長波通和短波通應用。
圖4:二向色性濾光片鍍膜說明
起始波長
起始波長是用於(yu) 表示在長波通濾光片中透射率增加至50%波長的術語。起始波長由圖5中的λcut-on起始表示。
圖 5:起始波長說明
截止波長
截止波長是用於(yu) 表示在短波通濾光片中透射率降低至50%波長的術語。截止波長由圖6中的λcut-off截止表示。
圖6:截止波長說明
Semrock成功地將穩定*的濺射沉積係統與(yu) 沉積控製技術,不同的預測算法,工藝改進和批量生產(chan) 能力相結合。Semrock性能優(you) 良的光學濾光片為(wei) 生物技術和分析儀(yi) 器行業(ye) 樹立了標準。
Semrock濾光片全部由離子束濺射和專(zhuan) 有的單基片結構製成,可實現較高的透射率。更加陡峭的邊緣,準確的波長精度和精心優(you) 化的遮擋意味著更好的對比度和更快的測量-即使在紫外線波長下也是如此。
Semrock濾光片具有很長的使用壽命和優(you) 良的性能,可確保獲得優(you) 良的圖像。與(yu) 升級相機和物鏡的成本相比,它們(men) 可能是提高顯微鏡性能的簡單經濟的方法。
經驗證的可靠性
所有Semrock濾光片均具有出色的可靠性。簡單的全玻璃結構加上離子束濺射硬玻璃塗層(與(yu) 塗層玻璃一樣堅硬)意味著它們(men) 幾乎不受濕度和溫度引起的降解的影響,並且易於(yu) 清潔和處理。
我們(men) 充滿信心地為(wei) 濾光片提供全麵保修,讓您放心。我們(men) 的濾光片經過精心設計,可以在逐年測試中保持其高水平的性能,並通過消除費用和更換成本的不確定性來降低您的擁有成本。
下圖顯示了隨著時間的推移,氙弧燈的暴露如何影響每個(ge) 濾光片的光譜特性。一天之後,傳(chuan) 統的軟塗層DAPI濾光片的透射率下降了42%。我們(men) 對其他常見的勵磁濾光片進行了類似的測試,發現每個(ge) 軟塗層濾光片都會(hui) 損失傳(chuan) 輸和通帶,而硬塗層Semrock濾光片則不會(hui) 受到影響。
Semrock濾光片已經過測試,可以滿足或超過在苛刻的軍(jun) 事規格MIL-STD-810F,MIL-C-48497A,MIL-C-675C和國際標準ISO 9022-中規定的環境和物理耐久性要求。
可重複的結果
無論您是從(cong) 一次運行還是從(cong) 最後一次運行使用濾光片,結果都將始終相同。 我們(men) 高度自動化的批量生產(chan) 係統會(hui) 密切監控流程的每個(ge) 步驟,以確保每個(ge) 濾光片的質量和性能。 最終用戶受益於(yu) 濾光片之間可變性的降低,OEM製造商可以依靠安全可靠的供應線。
Kola Deep™光譜測量係統:測量更深的阻擋
圖1:即使在紫外線遠處,Kola Deep係統也能準確測量狹窄的LaserLine濾光片(Semrock LL01-248),其陡峭的邊緣從(cong) 高透射率到超過OD7。藍色顯示的Kola Deep測量值可以準確地跟蹤綠色的理論曲線。 為(wei) 了進行比較,標準光譜儀(yi) (Perkin Elmer Lambda 950)的測量結果以紅色顯示,並在OD 3處停止跟蹤邊緣。
可樂(le) 深光譜測量係統將光密度(OD)理論帶入了測量現實。 我們(men) 的工程師開發了一套專(zhuan) 有的新係統,可以對Semrock品牌光學濾波器的陡和深光譜特征進行可靠的測量,從(cong) 而確保您的儀(yi) 器將提供優(you) 良的靈敏度。
ØKola Deep可以評估在紫外,可見和近紅外光譜中對OD 9+的阻擋
ØKola Deep解決(jue) 了相對於(yu) 邊緣波長大於(yu) 0.2%的邊緣,從(cong) 90%透射到OD 7以上的問題
濾光片的測量
由於(yu) 標準計量技術的局限性,經常無法準確地確定薄膜幹涉濾光片的測量光譜特性,尤其是在邊緣較陡而較深的情況下。 光學濾波器提供的實際阻塞不僅(jin) 取決(jue) 於(yu) 其設計頻譜,還取決(jue) 於(yu) 濾波器的物理缺陷,例如在薄膜塗層過程中產(chan) 生的針孔以及諸如灰塵或灰塵之類的表麵缺陷。 使用市場上可買(mai) 到的分光光度計來測量光學濾光片的光譜性能,但是當光學濾光片具有較高的邊緣陡度和/或非常深的阻塞時,這些儀(yi) 器可能會(hui) 受到重大限製。
由於(yu) 這些限製,實際濾波器頻譜與(yu) 其測得的表示之間存在三個(ge) 主要差異(見圖2)。 一個(ge) 差異是尖銳的光譜特征的“四舍五入”。 這是由於(yu) 分光光度計探頭光束的帶寬不為(wei) 零所致。 第二個(ge) 測量差異是有限的OD測量範圍,這是分光光度計靈敏度有限的結果。 第三差異是從(cong) 高阻塞到高傳(chuan) 輸的非常陡峭過渡的測量所不同的,被稱為(wei) “邊帶測量偽(wei) 像”。 該偽(wei) 像是由非單色探測光束引起的,該探測光束在其帶寬之外的波長處也具有較弱的邊帶。
圖2:使用商用分光光度計觀察到的測量偽(wei) 影
Semrock利用替代方法來評估濾光片光譜。圖3顯示了“ E級”RazorEdge®濾光片的陡峭邊緣的五個(ge) 測量光譜,該光譜可確保在OD> 6的情況下阻擋532 nm的激光線,並在激光波長的0.5%之內(nei) 過渡到高透射率(534.7倍)納米)。測得的光譜覆蓋在濾波器的設計光譜上(藍線)。如圖所示,測量儀(yi) 器和技術極大地影響了濾波器的測量光譜。該圖中的測量方法A來自定製的分光光度計。此測量使用儀(yi) 器設置,例如較短的檢測器積分時間和低分辨率,因為(wei) 這些設置經過優(you) 化,可在薄膜濾光片製造過程中從(cong) 大量樣品濾光片非常快速地收集數據。但是,這種方法的靈敏度和分辨率很差。測量方法B使用標準的商業(ye) 分光光度計(Perkin Elmer Lambda 900係列)。如上所述,實際濾波器光譜與(yu) 測量光譜之間的所有差異在此測量中都是顯而易見的。測量方法C和D使用與(yu) 方法A相同的定製分光光度計。該分光光度計的基本工作原理如圖4所示。該儀(yi) 器使用低噪聲CMOS攝像頭(即檢測器陣列),能夠測量同時具有很寬的波長範圍。測量方法C使用的儀(yi) 器設置(主要是積分時間和分辨率)設計用於(yu) 增強對陡峭邊緣和深邊緣的測量,但是“邊帶測量偽(wei) 影”仍然很明顯。測量方法D是對方法C的修改,該方法應用了其他過濾以消除此偽(wei) 像。方法E顯示了使用經過仔細過濾的532 nm激光進行的非常準確的測量結果,以及濾光器本身的角度調整。使用理論模型,將實驗獲得的透射率與(yu) 角度的數據轉換為(wei) 透射率與(yu) 波長的結果。此測量方法接近實際設計曲線,但是不適用於(yu) 大量過濾器的質量保證。
圖3:使用文中所述的不同測量方法,同一濾波器(圖1中)的設計和測量光譜
圖4:定製的分光光度計,可實現更快,更準確的測量
總之,重要的是要了解用於(yu) 生成光學濾光片光譜的測量技術,因為(wei) 這些技術並不很優(you) 良。 對給定的過濾器或應用程序使用適當的測量方法可以減少錯誤,並減少使用過濾器的實驗和係統的過度設計,從(cong) 而優(you) 化性能,結果,甚至過濾器成本。
產(chan) 品谘詢